广西城镇建设◢

广西沿海某工程填海地基处理效果分析

□江 鹏

[摘 要] 本文基于广西沿海新填海地基需要快速消除填土沉陷、提高填土承载力,才能达到满足一般低层建筑地基强度和地基稳定要求,提出采用强夯法进行地基处理。经过现场取样分析、强夯试验、轻便触探试验等方法研究分析,确定强夯法在该类地基有效加固深度达约6m,地基承载力特征值可达120KPa。工程建成两年多,没有发生异常情况,可满足业主对工期和地基强度要求,可供类似工程地基处理提供借鉴。

[关键词] 滨海; 新填土; 地基处理; 强夯法; 填土沉陷; 填土承载力

1 工程概况

广西北海某沿海工业园总占地面积160.9万m²,主要拟建建筑物特征及基础工程结构,初步设计如表1所示。

2 地基岩土工程地质特征简介

2.1 地理位置

拟建场地位于广西北海市沿海的北暮盐田,距北海市区约40km。

2.2 气象条件

工程地属亚热带海洋性季风气候,多年平均气温22.9℃,极端最高气温37.1℃,最低气温2℃,每年5—10月为雨季,降水量占全年的83%。多年平均降雨量1548mm,最大降雨量1774.6mm,最小降雨量1160.4mm,蒸发量1869.6mm,年平均相对湿度81%。夏秋两季常受台风影响,年影响0~6次,风力一般为5~6级,最大17级,台风最大风速为60m/s,台风一般伴随有大雨,当碰上大潮时,形成风暴潮。

2.3 地形地貌

项目拟建场地位于海滩盐场和潮间浅滩相交地带,属海岸地貌,虾塘深1m~3m,填土厚度3m~8.7m(上部新填土厚度1m~3m,还需要填高2m~5m;下部吹填土时间3~5年,厚度一般1m~4m)。场地东侧为潮间带,退潮时为沙滩,涨潮时水深2m~4m。

2.4 场地岩十层工程地质特征

在勘探深度范围内,场地土层自上而下分为10个 主层,2个亚层。主要参数如表2所示。

①填土(Q_4):土色呈褐、黄褐色,干湿程度为稍湿,土状松散,主要由中粗砂、黏土颗粒组成,夹少许砾砂。层底标高-3.5m \sim 2.6m,层厚3m \sim 8.7m,平均厚度4.3m。

②淤泥质粗砂(Q_4):土色呈灰黑、黑色,土状松散,干湿程度为稍湿,以石英质粗砂为主,中砂次之,次棱角状,级配差,淤泥含量约10%,有腥臭味。揭露层层顶标高-3.5m \sim 2.6m,层厚 $0.4m\sim$ 8.4m,平均厚度3m。

表1 A、B、C、D、E、K、L区拟建建筑物性质一览表

名称	层数	高度/m	室内标高/m	面积/m²	拟采用结构形式	单柱标 准值/t	拟采用 基础形式	基坑 深度/m
汽玻车间1(A区)	1	9	5.7	82592	轻钢结构	/	桩基	/
汽玻车间2(A区)	1	9	5.7	82592	轻钢结构	/	桩基	/
成品车间1(B区)	1	10	5.7	167132	轻钢结构	70	桩基	/
均化车间1(K区)	1	25	5.7	16546	混凝土挡墙,上部钢结构	/	桩基	/
袋装原料车间1-a(L区)	1	9	5.7	1944	轻钢结构	70	桩基	/
天然气站(E区)	1	/	5.7	432	/	/	地基处理后	/
110kV变电站(D区)	1	/	5.7	6080	/	/ 浅基础		/

[作者简介] 江 鹏,广西壮族自治区三〇五核地质大队。

②₁淤泥(Q₄):土色呈灰黑、黑色,软硬度为软塑,干湿程度为稍湿,淤泥夹生物碎屑,干强度低,韧性差,夹少许粗砂。揭露层顶标高-3.8m \sim 1.8m,揭露层厚0.8m \sim 3.3m,平均厚度1.8m。

③粗砂(Q_4):土色呈黄、褐黄色,土状松散至稍密,干湿程度为稍湿至湿,以石英质粗砂为主,砾砂次之,砾砂粒径在2 $mm\sim3mm$,次棱角状,粗砂次之,级配良好。层顶标高-6.3 $m\sim1.4m$,层厚 $1m\sim9.9m$,平均厚度3.5m。

④黏土(Q_1z): 土色呈灰白色,饱和,软硬度在可塑至硬可塑之间。揭露层顶标高- $11m\sim1.5m$,揭露层厚 $0.2m\sim10.9m$,平均厚度3.4m。

 \textcircled{Q}_1 粉质黏土(\textcircled{Q}_1z): 土色呈浅灰、灰白色,软硬度在软塑至可塑之间,干湿程度为湿,刀切面稍粗糙,干强度较低,手搓有细微砂感,底部夹有粉细砂。揭露层顶标高-12.3m \sim 0.9m,揭露层厚1.1m \sim 6m,平均厚度2.9m。

⑤粗砂(Q_1z): 土色呈灰、灰白色,密度为稍密至中密,干湿程度为稍湿,以石英质粗砂为主,砾砂次之,多呈次棱角状,含少许粉砂,级配差,黏性土含量约10%~15%。揭露层顶标高-13.2m~1.1m,揭露层厚1.3m~16m,平均厚度7.6m。

⑥粉质黏土(Q_1z):土色呈灰白、灰色,软硬度在软塑至可塑之间,干湿程度为湿,干强度较低,手搓有细微砂感,底部夹有较多粉细砂。揭露层顶标高- $14.7m\sim-3m$,揭露层 $\overline{p}0.8m\sim10.2m$,平均 \overline{p} 度3.2m。

⑦粉细砂(Q_1z): 土色呈灰白色,密度为松散~稍密,干湿程度为湿,以石英粉砂、细砂为主,含黏性土颗粒,手搓有明显砂感,可塑性低。揭穿后平均厚度 22.3m,层顶标高-21.7m~-1m。

⑧粉质黏土(Nn²): 土色呈浅黄、浅灰色,软硬度在软塑至可塑,干湿程度为湿,干强度较低,手搓有细微砂感,底部夹有粉细砂。该层局部有分布,层顶标高-18.8m,厚度2.1m。

⑨粉细砂(Nn²): 土色呈黄、土黄色,密度为稍密,干湿程度为湿,石英粉砂、细砂为主,含黏性土颗粒,手搓有明显砂感,可塑性低。该层局部有分布,厚度20.2m,层顶标高-20.9m。

⑩泥岩(Nn¹): 土色呈墨绿、灰绿色, 软硬度在可塑至硬塑, 干湿程度为湿, 以黏性土颗粒为主, 刀切面光滑, 干强度高, 全风化。揭露层顶标高-41.1m~-35.4m。

表2 主要岩土层岩土设计参数建议值一览表

指标土层名	天然 重度 ₇	抗剪: 标准	值	标贯修 正击数	承载力 特征
称及代号	(kN/ m³)	粘聚力 c_{k} (kPa)	内摩擦角 ϕ_k (°)	N(击 /30cm)	值 f ak (kPa)
①填土	20.7	10	8	4.6	80
②淤泥质 粗砂	19.8	12.6	9.2	4.7	80
②₁淤泥	17.9	6.8	4.5	1.9	30
③粗砂	19.5	/	30	10.1	180
④黏土	19.9	40.7	10.8	11.3	260
④1粉质黏土	18	14.1	4	7.2	180
⑤粗砂	20.4	/	30	11.8	220
⑥粉质黏土	20.3	19.5	10.8	7.1	190
⑦粉细砂	20.4	16.2	8.3	11.2	150
⑧粉质黏土	20.3	19.5	10.8	7.9	200
⑨粉细砂	20.4	16.2	8.3	14	180
⑩泥岩	18.3	30.7	10.1	13.5	280

2.5 地下水特征

潜水主要赋存于③粗砂、⑤粗砂层中,属孔隙潜水类型,主要靠大气降雨及海水补给,与海水水力联系密切,潜水稳定水位埋深3m~5m(标高0.2m~2.1m);承压水主要赋存于⑤粗砂、⑦粉细砂层中,稳定水头埋深3.1m~5.1m(标高0.1m~2.1m),含水层顶板为④黏土层,厚度0m~10.9m,潜水位和承压水位年变幅1m~2m。

2.6 地下水对建筑材料的腐蚀性

本场地属湿润区,含水层主要为强透水土层,局部为中等透水土层,场地环境类型判别为 II 类。潜水、承压水均对混凝土结构具强腐蚀性,对干湿交替环境下的钢筋混凝土结构中的钢筋具强腐蚀性,对长期浸水环境下的钢筋混凝土结构中的钢筋具微腐蚀性。

2.7 土对建筑材料的腐蚀性

填土对混凝土结构具有弱腐蚀性,对混凝土结构中的钢筋具有微腐蚀性,对钢结构具有中腐蚀性。

3 快速解决岩土工程地质问题

由于业主工期规划很短,刚填完场地就需要开展工程建设,因此需要快速解决新填土的填料来源,以最经济可行的技术解决新填土的沉陷和固结问题,并满足堆场和一般仓储建筑物地基承载力要求等问题。

4 强夯试验

4.1 试验的目的和任务

经勘察、设计、业主、施工等多单位工程技术人员研究,参考有关经验^[1-2],对地基的处理决定采取强夯

2021.9 **_ 87**

方法,使用当地丘陵土体做新填料,选择有代表性填海 地段开展强夯试验,以此研究强夯方法及其加固有效深 度、强夯后地基变形和地基土承载能力,为大面积应用 强夯处理填海地基提供经验。

4.2 夯点布置方案及施工方法

根据实际情况,在填土较厚的地方选择一块20m×20m的正方形场地作为强夯区,夯点以6m×6m梅花形布置如图1所示,夯锤和提升高度应根据夯击能量确定。强夯施工如下:

- (1) 夯击点位置可采用梅花形,布点方式为6m×6m梅花形布点,一遍施工完成。
- (2) 点夯遍数为2遍,每个夯点暂定夯击3~4击, 点夯单击夯击能为3000kN·m。
- (3) 满夯遍数为1遍,满夯夯击能为1000kN·m,如 图2所示。

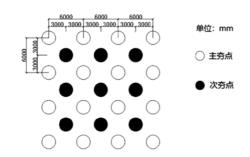


图1 夯点布置图

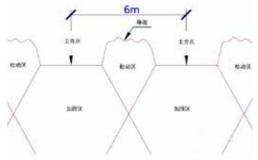


图2 强夯施工示意图

4.3 强夯试验效果分析

根据填土强夯前后分别取样进行的室内试验结果, 并按取样深度分组统计数据,然后根据前面击实试验的 结果计算填土的压实度。如表3所示。

表3中的数据表明,使用强夯方法对填土地基的处理有明显的效果,最直接的体现就是填土干密度的增大,但是不同深度内填土干密度的增大幅度也不相同,这说明强夯加固效果随着填土深度的增加不断减小,最后一定存在一个有效加固的深度,使用强夯法对超过这

一深度的土层没有加固效果,具体有效加固深度,可以 通过以下填土强夯前后轻型动力触探击数的对比得到。

表3 填土强夯前后干密度对比结果

深度(m)	夯前干密度 (g/cm³)	夯后干密度 (g/cm³)	最大干密度 (g/cm³)	密实度
0~1	1.81	1.86		0.99
1~2	1.80	1.83		0.97
2~3	1.78	1.81	1.88	0.96
3~4	1.79	1.81		0.96
4~5	1.71	1.77		0.94

表4对现场原位试验数据按土层和深度统计取平均值。根据动探击数可以确定夯前填土地基承载力特征值约为80kPa,夯后填土地基的承载力特征值约为120kPa,填土地基承载能力提升明显。通过对比还可以看到随着土层深度的增加,夯后填土动探击数相较于较夯前,提升幅度也越来越小,跟干密度变化规律一致,再一次证明强夯加固效果会随深度的增加而减弱,证明在这种击实能量下,铁山港填土强夯加固有效深度为6m。

表4 填土强夯前后轻型动力触探击数对比

土层名称	深度(m)	夯前轻型动力触 探击数N₁₀	夯后轻型动力触 探击数N₁₀	
素填土	0~1	12.3	31.6	
	1~2	11.7	28.4	
	2~3	11.4	26.7	
	3~4	10.6	24.9	
	4~5	10.7	22.7	
淤泥质粗砂	5~6	9.8	13.1	
	6~7	9.1	10.7	

5 结论

一是北海某沿海滨海地基用冲积平原土丘土作填料,采用强夯加固地基,有效深度约6m,压实填土地基承载力特征值约为120kPa,效果比较明显,对于新填土地区,能消除其沉陷。二是加固后天然地基可做1—3层且沉降要求不高的低层建筑物天然地基基础持力层及普通堆场。三是该工程已建成投产近两年,目前没有发生异常情况,说明该方法适用于该地区填海地基处理,且社会效益和经济效益均比较理想,可供类似工程地基处理借鉴。

[参考文献]

[1]胡纯龙.广西北部湾填海造陆工程地基基础及施工方法[J].探矿工程(岩土钻掘工程),2009,36(6):51-54.

[2]马胜中.北部湾广西近岸海洋地质灾害类型及分布规律[D]. 北京:中国地质大学(北京),2011.